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ABSTRACT _E; £;>49‘2t3

Let Gz denote the region between the unit circle T and
the free boundary y. Find the function ¥ so that ¢ is harmonic
within Gz and continuous on Gz + T + v; x= 0onT;

’\= const on v; grad ¢y = Q on v, with Q(x, y) given.

1. Formulation of the Problem. Let |z| <1, z = x + 7y hold with-/979%

in a unit circle; let the (sufficiently continuous) function Q(z, y) > O be
given. It is necessary to determine the continuous curve y located within
the circle Izl <1, so thatﬁiiiﬂybconnected region Gz, which is limited by
Y and a wnit circle T: ]3| = 1, the following conditions are fulfilled:

1) the function y(z, y) exists which is harmonic within G, and continuous in
Gz +yYy+T; 2)y=0o0nT; 3) ¢y =¢c1, ¢c; = const # 0 on v; 4)|grad.w| =@

on y .

Since the formulation of the problem is invariant with respect to the
conformal mapping, the case of an arbitrary curve I which defines the doubly-
connected region may be readily reduced to the case under consideration.

This problem arises in hydrodynamics where special assumptions regarding

I' and @ are formulated (the theory of waves in a heavy liquid, jet flows),

and in these cases, considerable progress has been made regarding this problem.

* Note: Numbers in the margin indicate pagination in the original foreign
text.



Thus, A. I. Nekrasov was the first to show the existence of periodic waves

in a heavy liquid (1921) [see, for example, (Ref. 4), page 358]. M. A.
Lavrent'yev (Ref. 3) proved the existence of a single wave (1946). Recent
studies on this problem have been compiled in a book (Ref. 5). In the
formulation we are considering, the problem was studied by Beurling (Ref. 2),
which preseﬁted a classification of the possible cases, indicated certain cri-
teria for the solution, and also presented sufficient conditions of uniqueness.
This article applies the analytical method to study the problem, presents cri-
teria which may be effectively verified for the (local) uniqueness of the
problem, and conditions sufficient for existence.

2. Reduction to an Auxiliary Problem. Let ¢(x, y) be the adjoint func-

tion which is harmonic to § (friction potential). If we designate the (un-—
known) flow circulation by v = sign el{ Q@ ds # 0, and if we investigate the

function

T=1(z) = exp 52’"

X@}, x=e+i, V40,
@ 3 o
we may readily show that it performs conformal and one-sheeted mapping of the
unknown region Gz into the gﬁae G:ir< |t] <1, where r = exp {-(21/V)e1}< 1
(the radius r is unknown). Therefore, the function z = z(1),which is the in-

verse function of (1), is found. The last condition of the problem in terms

of the variable 2(71) assumes the following form

dzl

5cl= for [t|=r,§ where A= r'v'exp{zu'c” . (2)

A |
Qx,y)
The derivative dz/dt contains no zeros in Gz . In addition, the func-

tion

F) =Lng =ln | 532 | +iarg 50 )

is single valued, regular, and analytic in Gr' The function z(1) can be
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readily expressed by means of F(t). Performing the appropriate normalization

in the selection of ¢, we obtain the formula

. ,
2(v) =2 {oxp (F (1) at +1. )
1
Thus, the problem may be reduced to determining the function F({1), /980

for which the function (4) is one-sheeted in G'r'

3. Reduction to Integral Equations. Let us represent the function F(t)

in terms of the Will formula:
2=
F (1) = -f'_gp(s);(—f.-lnr-.s; A, —ilnr)ds—
°
. 2n N .
[ 3 . . b
_Tg.p,(s)g(-—‘:-ln r-—s+zlgr;n,—-11n r)c.is-— ()

0
-
13 ‘oo i
_(._;_-*-"—iﬂlnr)—;—gp,(s)ds-{—ia n(r)=;‘—2[1——242_(‘r_?;’7);—]v?

o k=1
where r(u; w, w”) is the Weirstrass function with the half-periods w =.m,
w” = -7 In r; C ~ the real constant [see, for example, (Ref. 1); we should
point out that in this book, formula (5) is not given precisely. Iﬁ does
not include the last component on the right].

In formula (5) we have set u(s) = Re F(eis), ui(s) = Re F(re®S);
the term 72(C is unimportant. Comparing formulas (3) and (2), we can see that
ui(e) = - 1n Q(z, y), where x(s) + iy(s) = z*(re’S). 1In order to make the

function (5) single-valued, it is necessary and sufficient that the following

condition be fulfilled

on

Ay = S B () —pa(s))ds = S in(s) +1n Qlds=0. .

(6)

For purposes of brevity, let us introduce the designation

(c(uw) = c(u; w, w?))



k £

S(@) =5 (R@le—s)ds, Su=p+Su;

<

Sip (0) = -+ p(s)[g(a—s+i1n N—i(g+ 4o r)]ds,

4 oMY

S () =+ {p@Le—s—itan +i(L 4+ Dar)]asy

4]
The first integral designates the principal Cauchy value. We shall assume
that the functions u(s), x(s), y(s) and the parameter A are unknown. Let us
substitute (5) in (4), and let us compute the limiting values of z*(e%0).
By requiring that the points of the circle ITI = 1 map into the points of

the circle |z| = 1, we obtain the first equation

A, =id gexp {ic + Sp () + S11n Q (z, y) (6)} ds +1 l’—-i =0
0 ' y

)]
in order to determine A, u{s), xz(s), y(s). We obtain two other equations by

computing the values of z*(rets):

2zt (re¥) =z (o) + iy (o) =1 + hgexp {F(t)}dt + :

+irr Q7 (z(9), ¥ (o) oxp fis -+ 8 In © (7, 1) (6) + Sus (N .

o

(8)

Thus, the problem under consideration is equivalent to the éystem /981
of equations (7) and (8) for the unknowns A, u(s), x(s), y(s), and we must
find its solution which makes the functions (4) and (5) one-sheeted.

The results presented below pertain to the special case when
Q(x, y) = q(p), where p2 = 22 + y2. 1In this case, A, u(s) and p(s) are un-
known. In order to determine them, we obtain equation (7) together with the
equation

=p*(s) — 1+1~L+WS“ @7 &P {w+Szu+Soln q(o)(O)}da‘ =0
(8"

(in order to obtain this equation, we must take the modulus of both parts
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of (8) and square them; L is the function corresponding to the first inte-
gral in (8)).

4. Spaces and Operators. Let us designate the triplet set w=(A, u, p)

by E, and let us assume that g, p<LipB, >0, , and let us assume that u(s)

is 2m-periodic. Introducing the norm || @ HE= Al + [u ”Lip g ¥ Il o "Lip 8

for E, we obtain the total, normalized, linear Banach space. The radius r and
the parameter A are related by the equation Ar In r = - lcl l; thus, in the

vicinity of any r # e-!, the single-valued branch r = r(A) is determined. Con-
tinuing r(A) and q(p) for all real X and p, and maintaining sufficient smooth-
ness, we can extend the operators 4j, 43, 4, to all E. We designate the trip-
let set w; = (ug, H1s H2) by E;, where pg is a number, uj;, up are functions of
s, and p: = Lip B, ps € Lip B, p & Lip B, mi(0) = 0. The set Ej, which is normalized

by means of the formula, |l '(é)::ifg.w-_; {uo| + Ul pe i g 4 It ﬂl;ip g+l pe !‘Iifp-af .

becomes a Banach space. It is found that the three operators Agp, A1, 4z de-
termine the continuous and continuously differentiable mapping wy = ¢(w)E
into E;.

When attempting to determine the symmetrical region Gg: Izl = pg, we
obtain ¢ = ¢; 1n p / 1n pg and pg is determined from equation

pog (po) In po = _Ical- 9
If pg is the root of this equation, then the triplet
wp = (g, ups Pp) = (@(po)s In q(pp); po),

as may be seen, satisfies equation ¢(wg) = 0. The problem consists of finding
the solution of equation ¢(w) = O which is close to wg.

5. Linearized System. Theorem of Uniqueness. Let us set

X = (b, hy 1), X3 = (upgs u1, u2/» and let us investigate the inhomogeneous
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equation
(o X) =X, XeE X&Ey (10)

where ¢$“(wp; X) is the Freshe derivative of mapping w; = ¢$(w) at the point
wg. Equation (10) is equivalent to a certain linear boundary problem in a
circle for an analytical function. By expansion in Laurent series, this prob-
lem can be solved completely.

Theorem 1. Let g(p) have a second derivative which is continuous in the
sense of Hdélder, and which is positive in the vicinity of the root py of equa~-
tion (9). In addition, let us set q'(pgy) # 0, pg # e-!, and let us assume

that the following condition is fulfilled

ey oo™+ n—1 oo L . T S——y 2,.

q@d 7F1 ¢ (po) 1+n 1+n i
2(po)_ - S ‘: 1)
7 (po) T 1+1npo +0. . A |

In order that equation (10) may be solved, it is necessary and sufficient

that the right part X; satisfy the following condition

n(po) o — H{uy, p2) =0, (12)
where H( uj;, up) is a certain linear function (which can be clearly defined).
Under conditions (11), the homogeneous equation (Xj; = 0) has only the trivial

solution. /982

Cases are also examined when py = e~l or q'(pg) = 0. If even one of
conditions (11) is disturbed, non-trivial solutions, which may be clearly de-
fined, appear for the homogeneous equation.

Theorem 2. (regarding local uniqueness). Under the conditions of theorem

1, the initial value problem in a certain (generally-speaking, small) vicinity
of the function p(s) = py (in the sense of metrics Lip 8, B > 0) does not have

non-trivial (i.e., different from circular) solutions.
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The proof of this is based on the fact that under the conditions of
theorem 1, the Freshe derivative ¢“(wg; X) contains the left inverse opera-
tor.

6. Existence Theorem. The problem we are considering encompasses the

case of periodic waves in a heavy liquid: The corresponding function q(p)

has the form q(p) = (2np)-11/C + n~igl In p, where 1 is the wave period, and
C is the Bernoulli constant. Therefore, we shall assume that - in addition
to the variable p - g contains a certain amount of parameters

V= (Vs V25 soes v, .
The mapping w; =¢(w; v) will also depend on v. We shgll use pp to designate
the root of equation (9) for certain fixed values of v = v?. Under the con-
ditions of theorem 1, it is found that in the case of n(py) # O there is
an n-parametric solution: A = A(v), u = u(v, 8), p = p(v, 8) of the system
of equations 4; = 0, Ap» = 0, which is determined in the vicinity of (pp, vo)
and is such that A(v0) = Xp, u(v?, s) = ug, p(v9, 8) = py.

In order that the function (4) be one-sheeted, it is necessary that

Fi(vi, vey .., V) =1m exp{F (t, v)}dt =0, (13)

isi=1
where F(t, v) is a function which is given by a formula such as (5) for a
given solution. We should point out that fj(v;?, vo% ..., v _0) = 0, because

n

in this case the function (1) coincides with 2. Direct computations show

cha O l..« __ F4n (po)'gw, (pos vo)? 1—po y
e pot* (por V) Pod (pon Y1/ 4, (pov) T Ta pP — 1)
1 2 )
%[ =T "2 po—1)] | (14)

It thus follows that if

’ 0 ’ 0
o (Po, v ) 7=, O, av, (PO, v ) ‘% O: "I(PO) 7+ 09 (15)



the partial derivative of the function (13) with respect to v; at the initial
point v = v0 is different from zero. Consequently, there is a function

vi = vi(vy, ..., v,J), for which the function (13) vanishes. It can be also
shown that the function fa(v) = Ag(uls, vJ, p(s, v)) vanishes for this func-
tion, and that the function (4) is one-sheeted.

Theorem 3. (existence theorem). Let the function g depend on p and on

n (important) parameters Vi, Vy, ..., V,, and let the conditions of theorem 1
be fulfilled at the point (py, vO)., 1f q is continuously differentiable with
respect to the parameters v and if the condition (15) is fulfilled, then in a
certain vicinity of p = py, the initial value problem has a (n - 1)-parametric
set of solutions which are different from the trivial solution p = py.

We should poipt out that the variable ¢; from the third condition may
also be assumed to be a parameter of the problem. In this case, there is a
n-parametric set of solutions. As a consequence, we obtain the existence

theorem of a biparametric set of periodic waves.
Novosibirsk State University Received December 18, 1964
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